[1] 沈玲玲. 空天飞行器再入过程中关键热结构的热分析[D]. 西安: 西北工业大学, 2006.
[2] Herdrich G, L?hle S, Auweter-Kurtz M, et al. IRS Ground-Testing Facilities: Thermal Protection System Development, Code Validation and Flight Experiment Development[R]. AIAA2004-2596.
[3] Ozawa T, Suzuki T, Fujita K. Experimental and Numerical Studies of Hypersonic Flows in the Rarefied Wind Tunnel[R]. AIAA2010-4513.
[4] Burtner D, Keefer D, Ruyten W. Low-Power Ammonia Arcjet: Numerical Simulations and Laser-Induced Fluorescence Measurements[J]. Journal of Propulsion and Power, 1996, 12(6): 1123-1128.
[5] Butler G W, Kull A E, King D Q. Single Fluid Simulations of Low Power Hydrogen Arcjets[R]. AIAA1994-2870.
[6] 黄河激, 潘文霞, 付志强, 等. 用于发动机热防护材料烧蚀实验的小型等离子体风洞[C]. 丽江:第一届高超声速科技学术会议, 2008.
[7] 王德文, 杨月诚, 查柏林. 地面模拟再入烧蚀系统研究[J]. 测试技术学报, 2013, 27(3): 248-253.
[8] 廖宏图, 吴铭岚, 汪南豪. 电弧喷射推力器内部工作过程研究综述[J]. 推进技术, 1999, 20(3): 107-112. (LIAO Hong-tu, WU Ming-lan, WANG Nan-hao. Survey of Internal Process Studies on Arcjet Thrusters[J]. Journal of Propulsion Technology, 1999, 20(3): 107-112.)
[9] 唐皇哉, 赵文华, 侯凌云, 等. 低功率电弧加热发动机的热效率[J]. 清华大学学报(自然科学版), 2007, 47(2): 232-235.
[10] 陈黎明. 电弧加热发动机的设计与研究[D]. 北京:清华大学, 2002.
[11] 赵宇辉, 王一白, 代晓松, 等. 注氧位置对电弧加热等离子体发生器性能的影响[J]. 真空科学与技术学报, 2017, (12): 1177-1182.
[12] Butler G W, King D Q. Single and Two Fluid Simulations of ArcjetPerformance[R]. AIAA92-3104.
[13] 王伟宗, 荣命哲, B Murphy Anthony, 等. 高温氮气电弧等离子体物性参数的计算分析[J]. 高电压技术, 2010, 36(11): 2777-2784.
[14] Megli T W, Krier H, Burton R L, et al. Two-Temperature Plasma Modeling of Nitrogen/Hydrogen Arcjets[J]. Journal of Propulsion and Power, 1996, 12(6): 1062-1069.
[15] Lago F, Gonzalez J J, Freton P, et al. A Numerical Modelling of an Electric Arc and Its Interaction with the Anode, Part I: The Two-Dimensional Model[J]. Journal of Physics D Applied Physics, 2004, 37: 883-897.
|